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Abstracts 

A popular method for climate change prediction are General Circulation Models which are at coarse 

spatial resolution and must be downscaled. In this study, observed data of temperature, precipitation and 

potential evapotranspiration over a base period under two emission scenarios in three time intervals were 

used to implement SDSM as a downscaling tool for HadCM3 model output. From another standpoint, 

MPEH5 model predicts data under three emission scenarios for three future periods. Results indicated that 

all parameters would increase in comparison to the base period. Predictions for all periods under all 

emission scenarios indicated an increasing trend for all parameters, although it is predicted almost as 

constant precipitation trend for the future. According to predictions by both models, the greatest increase 

has been estimated for 2080s under A2 scenario. In SDSM model, the greatest increases in mean monthly 

temperature would be respectively 6.9, 4.5, 6.2 °C for July and for potential evapotranspiration would be 

in June by 1.08 mm per day, which are predicted in the 2080s under A2 scenario. For precipitation, the 

greatest reduction under the same conditions, would be in May by 0.9 mm per day. In LARS-WG model, 

the greatest increase in mean monthly temperature in the studied station was predicted respectively by 

5.5, 5.5, 5.6 °C for August. The greatest reduction in precipitation, would be in February (by 0.88 mm per 

day). The future uncertainty results of predicted parameters in both models and various scenarios show 

that uncertainty of the predictions increase towards the end of the century. 

Keywords: Climate change, HadCM3, SDSM, MPEH5, LARS-WG, Uncertainty, Khorramabad.
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Introduction 

Climate change is one of the biggest future 

challenges of human (Spickett et al. 2011). This 

phenomenon is the result of increasing 

concentrations of greenhouse gases that make global 

warming. Increasing absolute humidity in the 

atmosphere layers near the Earth's surface causing 

changes in global precipitation regime for current 

century (Chmura et al. 2011). 

Warming of the climate system is unequivocal, 

and since the 1950s, many of the observed changes 

have been unprecedented over decades to millennia. 

The atmosphere and oceans have warmed, the 

amounts of snow and ice have diminished, sea level 

has risen, and the concentrations of greenhouse 

gases have increased )IPCC 2013 .(  According to the 

IPCC5 Special Report on Emission Scenarios 

(SRES), global surface temperature would increases 

by the end of the 21st century, which is likely to 

exceed 1.5 °C relative to the 1850 to 1900 period for 

most scenarios, and is likely to exceed 2.0 °C for 

many scenarios (Rehan Dastagir 2014). 

In most climate change studies, GCMs have 

been used to project future climatic variables. 

However, due to the limitation of GCMs to 

incorporate local topography (spatial and temporal 

scales), the direct use of their outputs in impact 

studies on the local scale e.g. hydrological 

catchments is restricted. To bridge the information 

for policy making and gaps between the climate 

model and local scales, downscaling is commonly 

used in practice. Dynamic downscaling and 

statistical downscaling are the most popular 

methods (Pinto et al. 2010; Schoof et al. 2009; 

Wilby et al. 1999). Dynamic downscaling by 

Regional Climate Models (RCMs) ensures 

consistency between climatological variables, 

however they are computationally expensive. 

Statistical downscaling models, on the other hand, 

are based on statistical relationships and hence 

require less computational time. Extensive research 

has been carried out with both approaches (Rana et 

al. 2014; Chen et al. 2012; Teutschbein et al. 2011; 

Willems and Vrac 2011; Maraun et al. 2010). 

Numerous studies have been done in the field of 

climate change and its impacts in the world and 

Iran.  

Samadi et al. (2011) conducted a research study 

in Khorasan Razavi province (Iran), and concluded 

that SDSM among several models, yields a very 

good simulation and its output has only 5% error. 

Hashemi et al. (2011) among the downscaling 

techniques recommended SDSM and LARS-WG 

                                                           
1. Intergovernmental Panel on Climate Change 

models. Their results showed that both models have 

good ability to simulate the maximum precipitation 

event, so can confidently be recommended to study 

climate change. Zhao Yong et al. (2010) did a 

numerical simulation and evaluation of regional 

climate change in Southwest China in which a 

regional climate model (RegCM3), and a coupled 

atmosphere-ocean model MPI-OM ECHAM5 

(MPEH5) were used. They concluded that those of 

simulations for annual precipitation average in the 

summer season is much better than winter and 

simulated amounts in winter are higher than 

observation. Nasoohyan et al. (2013) in a research 

studied the effects of climate change on 

precipitation and temperature in the plains of 

Borujen and Shahrekord during the period of 2020-

2049 using two GCMs (CGCM3 and HadCM3) and 

downscaling model of LARS-WG for A2 and A1B 

scenarios. According to the results, temperature 

over the study areas compared to the baseline will 

become warmer for all the seasons. Rate of 

increases in average temperature during 2030s 

compared to the base period in Shahrekord would 

be 1.7°C and in Borujen approximately 1.4°C. The 

precipitation predictions differ from the base period 

in Shahrekord, so that except the HadCM3-A2 

predictions which shows a decrease in precipitation, 

all other cases show increase in precipitation. 

However, in Borujen all models agree on the 

reduction of precipitation during the period of 2020 

to 2049. 

Hao et al. (2013) evaluated the ability of 22 

GCMs to reproduce temperature and precipitation 

over the Tibetan Plateau. The results showed that, 

all the GCMs underestimate temperature and most 

models overestimate precipitation. Also, the results 

suggested that, the temperature and precipitation 

will both increase in all three periods under different 

scenarios, with scenario A1 increasing the most and 

scenario A1B increasing the least. Chen et al. 

(2015) using 10 climate model simulations, tested 

the bias stationary of climate model outputs over 

Canada and the contiguous United States (U.S.) by 

comparing model outputs with corresponding 

observations. Results indicated that, in comparison, 

temperature bias can be considered to be 

approximately stationary for most of Canada and the 

contiguous U.S. when compared with the magnitude 

of the climate change signal and they advised that 

natural climate variability and climate model 

sensitivity be better emphasized in future impact 

studies. 

Mirdashtvan et al. (2017) presented a procedure 

that characterizes the changes of climatic variables 

for a period of time under representative 

concentration pathway (RCP) scenarios in of the 
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Karaj-Jajrud in the South Alborz Range, Iran. They 

concluded that, there is a consistent warming in 

mean air temperature for all the RCP scenarios, 

whereas the results indicated decreasing 

precipitation compared with the baseline. On the 

other hand, analysis the impacts of the downscaling 

process uncertainty on the prediction results 

indicated that, the contribution of this uncertainty 

source to the prediction uncertainty is relatively 

high, as about 30% of the downscaled temperature 

and precipitation data fall inside the 95% simulation 

condense intervals. Salajegheh et al. (2017) 

compared the results of two downscaling models 

(SDSM vs. LARS-WG) for considering the error 

criteria of daily rainfall, daily minimum and 

maximum temperatures within two stations of 

Ravansar and Kermanshah. The results indicated 

that in either of the calibration and validation 

periods, SDSM model benefits from a more 

appropriate performance than LARS-WG in the 

simulation of daily minimum and maximum 

temperatures at the two stations, whereas LARS-

WG model presents a more acceptable performance 

than that in the simulation of daily rainfall.  

So far, various studies in the field of predicting 

climate change and its impacts on the national and 

regional level have been carried out in Iran, each of 

which represents harmful effects of the climate 

change. Lorestan province as one of the semi-arid 

provinces, even suffers from climate change, and 

many signs of these effects on natural resources, 

agriculture and industry can be seen. So, due to the 

fact that income of many people depends on natural 

resources, livestock and agriculture in this province, 

awareness of climate change process, projecting 

climate change in future and the introduction of a 

model suitable for use at national scale assessments 

particularly in relation to natural disasters seem to 

be necessary. The purpose of this study was to 

assess SDSM model algorithm to simulate 

precipitation and temperature. The obtained results 

show that SDSM model has very powerful 

algorithm, so that with noise removal in the data, it 

can accurately predict changes. Hence, in this study, 

outputs of two general circulation models HadCM3 

under A2 and B2 scenarios, and MPEH5 under A2, 

A1B and B1 scenarios are used in order to project 

changes of monthly, seasonal and annual values in 

maximum temperature (Tmax), minimum 

temperature (Tmin), mean temperature (Tmean) and 

precipitation (Pcpn) variable until the end of the 

current century for the synoptic station of 

Khorramabad (Iran). For downscaling the outputs of 

HadCM3 the SDSM software is used and for 

MPEH5 model the LARS-WG is used. Finally, 

uncertainties of climate models are evaluated and 

compared between past period and projections in 

SDSM and LARS-WG models.  

 

Materials and methods 

Study area 

Khorramabad synoptic station has been selected for 

the current study, which is located in the Lorestan 

Province in Iran. Khorramabad station latitude is 

33̊25ˊ 57˝ N and longitude is 48̊ 16ˊ 42˝ E and 

altitude above sea level is 1147 m. Mean 

precipitation in Khorramabad station is around 

509.9 mm; summer precipitation is less than the 

ones in winter and autumn. In this area mean annual 

temperature is 17.2̊C, mean maximum temperature 

is 25.3̊C and mean minimum temperature is 9.1̊C. 

Figure 1 shows the location of Khorramabad 

synoptic station (Meteorological Organization of 

Lorestan province, 2010). 

 

Methodology 

In this study general circulation climate models 

output of HadCM3 under A2 and B2 emission 

scenarios (although there are also RCP scenarios 

with different assumptions, but SRES scenarios are 

still valuable and they are applied in different 

studies for predicting future climate condition) are 

used and climate model MPEH5 under A2, A1B 

and B1 scenarios are used to predict changes in 

maximum temperature (Tmax), minimum 

temperature (Tmin), mean temperature (Tmean), 

and precipitation (Pcpn), for four analysis periods, 

i.e., baseline (period 1961 to 1990 for HadCM3 

and period 1982 to 2013 for MPEH5), and future 

periods of 2010 to 2039, 2040 to 2069, and 2070 to 

2099 (which are denoted as 2020s, 2050s, and 

2080s, respectively). For downscaling HadCM3 

output, SDSM and for MPEH5 outputs LARS-WG 

were used. Finally, uncertainty of climate 

modeling was evaluated thorough comparison of 

the past period and the projections in SDSM and 

LARS-WG models. 
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Fig 1. Khorramabad synoptic station location 

 

Downscaling HadCM3 outputs using SDSM 

To run the SDSM model, two series of observed 

and large-scale data of GCM are needed. First 

series including daily Tmax, Tmin, Tmean and 

Pcpn data were provided by General Directorate 

of Meteorological organization of Lorestan 

province. The second series including large-scale 

variables of general circulation models, e.g., 

HadCM3 were obtained from the Environment 

Canada data portal 

(www.cccsn.ec.gc.ca/?page=pred-hadcm3) and 

related websites. 
In next step, the daily observed data (Tmax, 

Tmin, Tmean and Pcpn) were divided into two 

periods from 01/01/1961 to 12/31/1990 for 

calibration of SDSM and from 01/01/1990 to 

31/12/2001 for validation of this model. 

To prepare data in SDSM model each of the 

large-scale data files of NCEP (1961 to 2001) were 

used as observation for calibration and for 

validation of model. The data were divided into 

two periods of 01/01/1961 to 12/31/1990 in order 

to calibrate the SDSM model and period of 

01/01/1990 to 31/12/2001 for validate the model. 

Each of the 26 large-scale data files (H3A2a 

(1961-2099) and H3B2a (1961-2099)) were 

divided in three periods 01/01/2010 to 12/31/2039, 

01/01/2040 to 12/31/2069 and 01/01/2070 to 

12/31/2099 in order to predict variables and period 

of 01/01/1961 to 12/31/1990 were used as the base 

period.  

SDSM is a statistical downscaling tool which is 

used to simulate climate data in a given station 

under current and future conditions affected by 

climate change. Its data are in the form of daily 

time series for some climate variables such as 

precipitation (mm), minimum and maximum 

temperature (°C) and other climate parameters. In 

the process of downscaling in this model, a linear 

multiple regression develops among a limited 

number of large scale predictor variables and 

predictants at local scale like precipitation and 

temperature. The parameters of regression model 

are estimated by dual simplex algorithm. Suitable 

large scale predictors are selected by using 

correlation analyses and partial correlation 

between predictors and predictants in the study 

area (Wilby et al. 2004, Rajabi and Shabanlou 

2010). 

Downscaling MPEH5 outputs using LARS-

WG 

To run the LARS-WG for downscaling the 

MPEH5 model, two series of observed and large-

scale data of GCM are needed. First series include 

daily maximum temperatures, minimum 

temperatures, precipitation and solar radiation (or 

sunshine hours) data which were prepared by 

General Directorate of Meteorological organization 

of Lorestan province. LARS-WG software has an 

internal database which contains more than 200 

MB output of various scenarios and models. 

In LARS-WG model, the observation daily data 

from 1/1/1982 to 31/12/2013 were used to simulate 

the station climate behavior. In this model, it is 

necessary to input files consisting of four climatic 

parameters minimum temperature, maximum 

temperature, precipitation and sunny hours. Sunny 
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hours data of Khorramabad station are available 

since 1982. Hence, due to this statistical deficiency 

observation, data were used for simulations since 

1982. 

Error and uncertainty calculation in 

modeling of parameters 

In many climate change studies, uncertainties have 

not been studied in estimating parameters. Hence, 

considering the uncertainties in evaluation stages 

of climate change impacts, can improve the 

certainty of the final output. In this study, the 

uncertainties in estimated climate modeling for the 

past period and predicted values were evaluated 

and compared in SDSM and LARS-WG models. 
For assessing the models performances and 

comparing results, some necessary criteria are 

used, which include R2, RMSE, BIAS and NSE 

(Nash-Sutcliffe Efficiency):  
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where X is data, 
−

 is the mean of data,  is the 

variance and n is the number of data, indexes obs 

and sim represent observation (climatic variables) 

and model generated prediction. The criterion R2 

shows a linear relationship between large-scale 

variables and downscaled data, ranging from 0 to 

1, so the higher value of R2 the stronger the 

relationship is. Also, other criteria show the 

difference between large-scale and downscaled 

data. Besides R2, criteria RMSE and BIAS are used 

here as two creditable statistics. The lower value of 

RMSE and the absolute value of BIAS statistics, the 

stronger relationship is, indicating no specific 

description for their thresholds (Samadi et al. 2010, 

Moriasi et al. 2007).  
To analyze the uncertainty in the predictions of 

models, box plots were also used. To draw box 

plots, decadal averages of predicted parameters 

given by the two models, under A2 and B2 

scenarios for SDSM and B1, A2 and A1B 

scenarios for LARS-WG were used. Then the 

average of observed data (1961-2013), the first 

quantile, the distance between the first quantile and 

the median, distance between median and the third 

quantile of predictions for each studied variables 

are calculated in order to draw the box plots  . In the 

Box plots the greater distance between the third 

quantile and the first quantile (boxes height) or the 

distance of the first quantile from median or the 

third quantile from median is, the higher predicting 

uncertainty is.  

Results and discussions 

Calibration and validation results for monthly, 

seasonal and annual observation and predicted 

parameters were compared, which are presented in 

the following sections. Also, the results of 

monthly, seasonal and annual predictions are 

compared for both of the models implemented over 

three future periods. The generic predictor sets 

selected in this study are summarized in Table 1. 

 
Table 1: Selected climate predictor variables used for downscaling at Khorramabad station, for each month of the year; P 

stands for precipitation, T for mean temperature, I for minimum temperature, and A for maximum temperature 

Dec Nov Oct Sep Aug Jul Jun May Apr Mar Feb Jan NCEP No 

I   IT I I I IT IT I I I Mslpf 1 

        P P P  P5-vf 2 

AT ATP P AP ATP ATP AT A A AT AT ATP P500f 3 

   I    I I    P850f 4 

P P P P P P P P P P P P r850f 5 

AIT I A AT AIT AIT AIT AT AT AT AIT AIT Rhumf 6 

P P P    P P P P P P Shumf 7 

IAT IAT IAT IATP IATP IATP IAT IAT AT IAT IAT IAT Tempf 8 

shumaf = surface specific humidity P850f = 850 hPa geopotential height mslpf = mean sea level pressure 

tempaf = mean temperature at 2 m r850af = relative humidity at 850 hPa p5_vaf = 500 hPa meridional velocity 

 rhumaf = near surface relative humidity 

 

p500af = 500 hPa geopotential height 

 
The monthly, seasonal and annual comparisons 

between observed and simulated data during the 

calibration period (1961-1990) in Figure 2 (A, B, 

C, D and E) and validation period (1991-2001) are 
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illustrated in this Figs F, G, H, I and J. For Tmean, 

Tmax, Tmin, and ETP, the simulated curves 

replicated the actual data using NCEP predictors 

fairly good, indicating that future projections 

would be replicated well. In the case of Pcpn the 

monthly, seasonal and annual values are less 

matched. SDSM result of downscaling the current 

climate (1961-90) given by HadCM3 model, 

comparing to actual values, will further 

demonstrate the ability of SDSM to produce 

accurate projections. 

The calibrated SDSM models are used to 

downscale HadCM3 data to obtain 40 ensembles 

of synthetic daily Tmax, Tmin, Tmean, and Pcpn 

time series for the A2 and B2 climate scenarios for 

four analysis periods (baseline, 2020s, 2050s, 

2080s). Monthly, seasonal and annual projections 

for each climate variable, as well as each three 

periods, as depicted in Figure 3, show a 

considerable variability. According to these 

figures, in all three periods; monthly, seasonal and 

annual projections for Tmax, Tmin and Tmean and 

both climate scenarios, compared to the baseline 

period show a rising trend.  

In the case of precipitation, trends in monthly 

projections under the A2 scenario, for the 2020s 

except for January, November and December, for 

the 2050s except for January and December, and 

for the 2080s except for January, descends. Under 

B2 scenario, in the 2020s except for January and 

December, in the 2050s except for November and 

December and 2080s except for in January, in 

other months for each period, a decrease in 

precipitation have been predicted. 

For calibration LARS-WG model, graphical 

charts and for the validation, statistical tests are 

used. The monthly comparisons between observed 

and simulated data during the calibration period 

(1982-2013) are shown in Figure 4 (A, B and C). 

For temperature, simulated curves replicated the 

observed data fairly good, extrapolating that future 

projections would also be well. For Pcpn the 

goodness of fit for monthly values was less good. 

Results of the statistical tests for validation period 

(1982-2013) are presented in Table 2. The results 

comparing the observed data with 32 yr of 

simulated data generated by LARS-WG for 

distributions of Tmax, Tmin and Pcpn monthly 

means and its variances. Distributions using the 

means and variances were compared using the t-

test and F-test, respectively. 
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Fig 2: Comparison of daily mean observations and simulations obtained by downscaling NCEP global climate variables, for 

monthly seasonal and annual: Figs A, B, C and D for Calibration period (1961-90) respectively for Tmean, Tmax, Tmin and 

Pcpn, and Figs F,G,H and I for validation period (1991-2001) respectively for Tmean, Tmax, Tmin and Pcpn. 
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Fig 3: Monthly, seasonal and annual projection of Tmax, Tmin, Tmean and precipitation under A2 (left panel) and B2 (right 

panel) for 2020s, 2050s and 2080s comparing to baseline using HadCM3 model output downscaled by SDSM. 
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Table 2: The significance levels (p-value) calculated by the t-test and F-test for the monthly means and variances are shown. 

A probability of 0.05 or lower indicates a departure from the observations that is significant at the 5% level 

 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
T

m
in

 (
˚C

) 
Observed -0.9 0.3 3.23 7.18 10.92 14.61 18.67 17.95 13.04 9.14 4.35 0.64 

sd-Obse 1.454 1.587 1.469 1.065 1.312 1.98 1.729 1.911 1.468 1.933 1.328 1.639 

Simulated -1.06 0.31 3.56 7.39 11.03 14.66 18.74 17.78 13.02 8.81 4.61 0.89 

sd-Simu 0.739 0.923 0.645 0.62 0.743 0.728 0.569 0.49 0.441 0.758 0.831 0.805 

t-statistics 0.638 -0.017 -1.282 -1.065 -0.44 -0.123 -0.236 0.551 0.083 1.007 -1.016 -0.858 

p-values 0.525 0.987 0.204 0.29 0.661 0.903 0.814 0.583 0.934 0.318 0.313 0.394 

T
m

ax
 (

˚C
) 

Observed 10.61 12.67 16.91 22.44 28.69 35.83 39.35 39.04 34.65 27.44 18.58 12.66 

sd-Obse 2.091 1.845 2.407 1.736 1.659 1.285 0.84 0.855 0.847 1.581 1.789 2.119 

Simulated 10.57 12.45 16.98 22.41 29.14 35.61 39.58 39.06 34.47 27.5 18.37 12.56 

sd-Simu 0.563 0.85 1 0.724 0.624 0.457 0.355 0.373 0.476 0.891 0.997 0.768 

t-statistics 0.115 0.59 -0.152 0.108 -1.417 0.929 -1.383 -0.121 1.054 -0.203 0.555 0.246 

p-values 0.909 0.557 0.88 0.914 0.161 0.356 0.172 0.904 0.296 0.84 0.581 0.807 

P
cp

n
 (

m
m

) 

Observed 64.37 63.42 81.28 66.93 24.49 1.11 0.26 0.19 0.95 23.59 58.85 80.33 

sd-Obse 31.996 36.268 49.854 41.02 22.2 2.938 0.778 0.688 2.782 34.258 48.529 42.804 

Simulated 62.36 53.93 92.2 55.03 28.73 3.85 0.56 0.27 4.44 14.49 84.54 80.02 

sd-Simu 39.053 27.058 45.097 31.166 21.488 5.929 1.346 0.961 6.252 15.068 56.749 52.384 

t-statistics 0.225 1.186 -0.919 1.307 -0.775 -2.339 -1.077 -0.369 -2.883 1.375 -1.947 0.026 

p-values 0.823 0.24 0.362 0.196 0.441 0.023 0.286 0.714 0.005 0.174 0.056 0.979 

f-statistics 1.49 1.797 1.222 1.732 1.067 4.072 2.993 1.951 5.05 5.169 1.367 1.498 

p-values 0.273 0.108 0.58 0.132 0.857 0 0.003 0.067 0 0 0.388 0.266 

 

 
 

Fig 4: Comparison of daily mean observations and simulations obtained by LARS-WG,  

for Calibration period; (A) Tmax (B) Tmin and (C) Pcpn. 

 
The calibrated LARS-WG were used to 

downscale MPEH5 data to obtain daily Tmax, 

Tmin,Tmean, and Pcpn time series for the A2, B1 

and A1B emission scenarios and four mentioned 

analytical periods. Monthly, seasonal and annual 

projections for each climate variable, as well as the 

three periods were depicted in Figure 5. According 

to the figures, monthly, seasonal and annual 

projections for Tmax, Tmin and Tmean comparing 

to the baseline period show a rising trend, but in 
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case of Pcpn, trend of monthly projections under 

the A2 scenario for the 2020s, in the months of 

January, February, April, October and December 

in the 2050s, in February, April and October, and 

for 2080s in January, February, March, April, May, 

October and December decreasing and for the 

other months compared to the baseline increasing 

have been predicted. 

Under the B1 Scenario to the 2020s, in the 

months of January, February, April, October and 

December, for 2050s, in January, February, April 

and October, for the 2080s in January, February, 

March, April, May, October and December 

precipitation would decreas and in other months 

compared to the baseline precipitation would 

increase. Under the A1B scenario for the 2020s, in 

the months of January, February, April, May and 

October, during the 2050s, in January, February, 

March, April, October and December, and during 

the 2080s in January, February, March, May, 

October and December, decreasing precipitation 

and in other months increasing precipitation have 

been predicted. 

Annual Pcpn projections under the A2 scenario 

for 2020s and 2080s decrease is predicted, but in 

2050s they increased. Under the B1 scenario for 

2020s and 2080s increase is predicted and for 

2050s is unchanged under the A1B scenario for 

2020s and 2080s increased is predicted, and for 

2050s would decrease.  

For error analysis in modeling of the past 

period using the SDSM and LARS-WG, criteria of 

R2, RMSE, Bias and NSE were used for Tmax, 

Tmin, Tmean and Pcpn. Results are summarized in 

Table 3. The calculated R2 for Tmax, Tmin and 

Tmean for SDSM were greater to the one which 

was obtained by LARS-WG, whereas this criterion 

for Pcpn obtained using the LARS-WG is greater. 

This shows a stronger relationship between the two 

groups of data modeled by LARS-WG. For Tmax, 

Tmean and Pcpn variables, calculated RMSE 

values for SDSM obtained greater than the values 

calculated for LARS-WG outputs, indicating less 

errors and higher accuracy of modeling for the 

SDSM. For Tmin variable, RMSE for LARS-WG 

became greater than the one for SDSM, showing 

less errors and higher accuracy in modeling with 

LARS-WG. For Tmax,Tmin, Tmean and Pcpn 

variables, Bias values for SDSM and LARS-WG 

were close to zero, indicating a high accuracy of 

modeling for both models. Negative sign in Bias 

values shows that the model has underestimated 

the true values. For Pcpn, NSE is obtained for both 

models close to +1, in which 1 corresponds to a 

perfect match of modeled values to the observed 

data. However, the NSE obtained for LARS-WG 

greater than the one obtained for SDSM, which 

indicates a stronger correlation between the two 

groups in LARS-WG model. 

 
Table 3: Comparison the performance of SDSM and 

LARS-WG using statistical indices 

 

RMSE 2R Bias NSE Model Parameter 

2.8 0.955 0 - SDSM 

Tmax 
0.2 0.839 0.01 - LARS-

WG 

2.8 0.856 0 - SDSM 

Tmin 
0.3 0.838 0.1 - LARS-

WG 

2.26 0.933 0 - SDSM 

Tmean 
0.64 0.835 0.02 - LARS-

WG 

3.9 0.748 -0.2 0.646 SDSM 

Pcpn 
0.1 0.838 -0.1 0.993 

LARS-

WG 
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Fig 5: Monthly, seasonal and annual projection of Tmax, Tmin, Tmean and precipitation under B1, A1B and A2scenarios for 

2020s, 2050s and 2080s comparing to baseline using MPEH5 model output downscaled by LARS-WG 

 
Uncertainty results of the variables predicted by 

SDSM and LARS-WG are shown in the form of 

charts Boxplots in Figure 6. In the right panel, one 

can be seen, the range of uncertainty increases as 

prediction period increases in all variables. It can 

also be seen that the uncertainty in predicted 

variables Tmax, Tmin and Tmean, increase up to 

the last decade of the current century, i.e. 2091 to 

2100, meaning the trust in the predictions becomes 

less. Also, in the left panel height of boxplots 

increase, which also indicates an increasing trend 

in uncertainty of predictions. Boxes height is very 

low in decades before the 2060s which indicates a 

low range of uncertainty in predictions, while the 

range of uncertainty increases in decades after the 

2060s. About precipitation, uncertainty in some of 

decades is high and in some of decades is low. 

This can be explained by the fact that precipitation 

is a conditional parameter which influenced by 

many factors, whereas temperature is an 

unconditional  variable, and it is less affected by 

climatic anomalies and other factors. 

In Table 4 the distance between first and third 

quartile (height of boxplots) shows amounts of 

uncertainty in predictions which increases from the 

past to future. According to the table, the greatest 

uncertainty is related to decades of 2070, in which 

variables of Tmax, Tmin and Tmean, are predicted 

28.2 ̊C with error of 2 ̊C for Tmax, 11.4 ̊C with 

error of 2.3 ̊C for Tmin and 19.9 ̊C with error of 

1.8 ̊C for Tmean. Also, the maximum uncertainty 

for precipitation calculated for the period 2050s, in 

which the precipitation is predicted from 2 to 9.1 

mm per day. The greatest uncertainty of Pcpn is 

related to period of 2050s, which is 2 mm/day with 

an error of 1.9 mm/day. 

 

 
Table 4: The range of uncertainty in each prediction periods for Tmax, Tmin, Tmean and Pcpn 

2090s 2080s 2070s 2060s 2050s 2040s 2030s 2020s 2010s Decade    

     Parameters   

11.5 11.5 11.4 10.3 10.2 10.2 9.4 9.2 9.2 Tmin (˚C) 

1.7 2.1 2.3 0.6 0.5 0.6 0.6 0.6 0.5 uncertainty range 

27.6 28.3 28.2 27.2 26.9 26.8 25.9 25.9 25.7 Tmax (˚C) 

0.5 1.7 2 0.4 0.4 0.5 0.7 0.6 0.1 uncertainty range 

19.9 19.9 18.7 18.7 18.5 18.5 17.6 17.5 17.4 Tmean (˚C) 

1.2 1.5 1.8 0.6 0.5 0.5 0.7 0.7 0.3 uncertainty range 

1.7 1.7 1.8 1.9 1.9 2 1.7 1.4 1.6 Pcpn (mm) 

0.6 0.5 0.3 0.8 0.7 0.8 0.4 0.3 0.5 uncertainty range 
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Fig 6: Box plot charts for evaluating model predictions uncertainties: ( A) Tmax, (B) Tmin, (C) Tmean and (D) Pcpn 

 

Conclusion  

In current study, for evaluating and predicting 

climate change at Khorramabad synoptic station, 

HadCM3 and MPEH5 with different scenarios 

have been used and downscaled using SDSM and 

LARS-WG, alternatively. The major findings of 

this study are summarized and discussed as 

follows: 

1) Results of calibration and validation of 

monthly, seasonal and annual show an acceptable 

accordance between observations and simulations. 

The calibrated models were also validated for its 

ability to predict Tmax, Tmin, Tmean and Pcpn. 

The validated results for both models showed good 

performance and ability of two models in the 

modeling of all under investigation parameters.  

2) In this research, the high ability of LARS-

WG model, to generate daily data, confirms 

research conducted by Semenov and Barrow 
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(2002) and Elshamy et al. (2005). Ability of SDSM 

model also confirmed research conducted by 

Rajabi and Shabanlou (2010), Ashraf et al. (2011) 

and Dehghanipoor et al. (2011) in other regions of 

Iran. 

3) Predictions of Precipitation in future indicate 

that overall Precipitation may decrease, although 

there appears to be no consistent trend in the 

predictions of monthly, seasonal and annual. 

However, climate change effects on Tmax, Tmin 

and Tmean are more pronounced, and the results 

show that three parameters in three predicted 

periods increased when comparing to baseline 

period. 

4) For error analysis of SDSM and LARS-WG, 

criteria of R2, RMSE, Bias and NSE for Tmax, 

Tmin, Tmean and Pcpn variables have been used. 

Results indicated a high and strong correlation 

between observation and simulation. The results of 

uncertainty analysis of two GCMs, showed that in 

general, when predictions approach the last 

decades of present century, the uncertainty of 

predictions would increase. The most error of 

predicted variables of Tmax, Tmin and Tmean is 

related to decade of 2070s, the error value for each 

variable respectively 2, 2.3 and 1.8 ̊C. In Pcpn, the 

maximum error is related to two decades of 2060s 

and 2040s, that the amount of both is equal to 0.8 

mm per day. 

5) According to the results, criteria of error 

comparison (R2, RMSE, Bias and NSE), SDSM 

model does modeling variables with less errors and 

more accuracy. Due to large contribution of GCM 

models, in uncertainty of downscaling models, it 

can be concluded that HadCM3 has better 

performance than the MPEH5 in the area of 

Khorramabad. 

6) In general, predicted monthly, seasonal and 

annual Tmax have the greatest increase compared 

to the baseline period in both GCMs, under A2 

scenario and in the period of 2080s. Under the 

same conditions, pcpn would decrease in most 

months and seasons, and in a small number of 

months would increase. 

7) In both GCM models, the greatest increase is 

predicted for Tmax, Tmin, Tmean for HadCM3 

and MPEH5 respectively in July and August and in 

summer under A2 scenario, and in the period of 

2080s. Based on the results of global warming is 

proved to be, and the temperature increases in most 

of months, especially in the warmer months of year 

and the summer season will be evident in the study 

area. 

8) Both downscaling models predict Pcpn with 

high precision, but LARS-WG powered to be more 

precise than Tmax, Tmin, Tmean and Pcpn. In this 

study, Tmax, Tmin and Tmean data has the high 

correlation to two GCMs compared to Pcpn. 

Consequently, daily Pcpn is the most problematic 

variable to study because it is a conditional 

parameter.  

Although using acceptable results have been 

calculated with both models, the number of 

additional GCMs exist for assessing precipitation 

in Khorramabad stations and evaluating the ability 

of other related models for investigation climate 

change have been suggested. 
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