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Abstract 

Vegetation is one of the most important factors in assessing land degradation. On the other hand,  

remote sensing of vegetation changes can provide useful information for ecosystem management. 

Therefore, this study sought to investigate the trend of changes in vegetation and its correlation with 

land-use and climate change in northeastern Iran. To this end, the data regarding the NDVI and EVI 

which were extracted from the MODIS satellite and MOD13A2 product from 2000 to 2017 were 

used to study vegetation changes, and data obtained from the MODIS MCD12Q1 product from 

2001 to 2017 were used to investigate the land-use changes. Moreover, the meteorological stations' 

data were examined to evaluate the trend of climate factors in the region.  

The study's results showed that the trend of changes in both NDVI and EVI was significantly 

negative. Furthermore, the land-use analysis showed that the agricultural and rangeland area 

decreased and the urban and barren land area increased significantly. The temperature also 

increased significantly during the period while the precipitation decreased slightly. Moreover, it was 

found that there was a significant correlation between land-use classes, NDVI, and EVI and that the 

correlation between precipitation and NDVI was significant at 95% (R=0.53). on the other hand, the 

investigation of the relationship between climatic factors, land use, and vegetation indices based on 

the Pearson correlation coefficient indicated that the land-use had a higher correlation with 

vegetation indices compared with that of the climatic factors.  

Therefore, it could be argued that degradation can be affected by human activities which in turn 

leads to land-use changes and the overuse of water and soil resources. The degradation can also be 

influenced by climate change, leading to a decrease in the available water supply to be used by 

natural vegetation. However, land-use and human activities were found to have more influence on 

NDVI, EVI, and land degradation. 
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1. Introduction 

A set of various environmental factors such as 

climate change and human activities such as 

deforestation and overgrazing leads to 

increased wind and soil erosion and eventually 

desertification ( Rondeaux et al. 1996., Foggin 

and Smith, 1996., Batjargal, 1997). In this 

regard, various studies have used remote 

sensing to monitor land degradation worldwide 

(Dubovyk et al. 2017; Mariano et al. 2018; 

Aralova et al. 2018., Zoungrana et al. 2018., 

AbdelRahman et al. 2019), showing that that 

land degradation is a process that involves a 

series of synthetic factors, most of which are 

environmental factors such as temperature, 

precipitation, and human activity (Montfort, et 

al., 2020; Xiao and Moody, 2005; Hermans-

Neumann, 2017; Fensholt et al., 2009; 

Herrmann et al., 2005; Xiao and Moody, 2005).  

As an important component of land 

ecosystems, vegetation plays an important role 

in storing soil carbon and decreasing 

degradation and desertification, the destruction 

of which may reduce biodiversity and lead to 

soil and land degradation (Yengoh et al., 2015). 

On the other hand, vegetation changes can be 

related to climatic events such as drought and 

temperature (; Dai, 2011a, 2011b, 2013; 

Trenberth et al., 2014; Dai and Zhao, 2017., 

Manesh et al. 2019 Li et al. 2019., Li et al. 

2020.,Ying et al, 2020., Peilin et al, 2020).  

Many studies have so far examined 

vegetation degradation based on land use/land 

cover (LULC) changes (Binh et al. 2015;  

Benewinde et al., 2018; Houessou et al., 2013; 

Ouedraogo et al., 2010). On the other hand, 

several researchers have studied land 

degradation in terms of trends of vegetation 

changes (Xu et al., 2016; Kaptué et al., 2015; 

Harris et al., 2014; Forkel et al., 2013; Peng et 

al., 2012;). However, the most important 

climatic factors affecting natural vegetation are 

precipitation and temperature (Dong et al., 

2019;; Peng et al., 2015; Zeng and Yang, 2009; 

Nezlin et al., 2005; Heydari Alamdarloo et al. 

2021). To study such processes over time, 

spectral indices such as Normalized Difference 

Vegetation Index (NDVI) or Enhanced 

Vegetation Index (EVI) are commonly used as 

indices of vegetation health that can be 

estimated via remote sensing (Ardöa et al. 

2018; Eckert et al. 2015).  

Obtained from red and near-infrared bands, 

NDVI is one of the oldest and most widely used 

vegetation indices. Generally, the index is 

sensitive to vegetation changes. However, it is 

less susceptible to weathering and soil 

conditions except in cases where vegetation is 

sparse. For instance, Darwish and Feuer (2008) 

investigated the causes of rangeland destruction 

in Lebanon using the NDVI.. Moreover, NDVI 

is widely used to study vegetation changes 

(Brown et al., 2006., Huang and Asner, 2013., 

;; Johansen et al., 2014; Gandhi et al., 2015; 

Vogelmann et al., 2016; Jarchow et al., 2017., 

Demattê et al., 2017, Krakauer et al., 2017, 

Richard & Poccard, 1998). In many studies, 

NDVI and precipitation are highly correlated 

with each other, while the temperature is less 

correlated with the NDVI (Li et al., 2004; Ji and 

Peters., 2004. Wang et al., 2001. Yang et al., 

1998, Liu et al., 2015). On the other hand, EVI 

is a new useful vegetation index similar to 

NDVI which can be applied to quantify 

vegetation greenness. However, EVI is 

corrected for some atmospheric conditions and 

soil background noise, and it is more sensitive 

in regions with dense vegetation (Vermote et al. 

2016).  

Many recent studies have shown that there is 

a strong correlation between EVI and gross 

primary production (GPP) in rangelands and 

grasslands. GPP can also have a high 

correlation with climatic factors, especially 

temperature and precipitation, as they have a 

significant impact on the canopy cover 

(Sjöström et al., 2014; Shi et al., 2017; Ma et 

al., 2008). On the other hand, as temperature 

and precipitation are key parameters at various 

stages of plant phenology, photosynthesis, and 
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transpiration, many studies have used remotely-

sensed vegetation indices to investigate the 

relationship between vegetation and climate 

factors ( Davenport and Nicholson, 1993.,Zeng 

et al., 1999; Zhang et al., 2007; Raynolds et al., 

2008; Sun and Kafatos, 2007;  Hawinkel et al., 

2016., Wilson et al., 2019., Kalisa et al. 2019., 

Lamsal et al. 2019., Lawal et al. 2019., Hao et 

al. 2020., Zhao et al., 2020). Furthermore, 

considering the fact that most regions of Iran 

are located in an arid and semi-arid climate 

whose ecosystems have weakened in recent 

years, the land degradation trend has increased 

in these regions due to the impact of human 

activities and climate change. 

Several studies have been conducted on land 

degradation in Iran (Kiani-Harchegani et al. 

2020; Poornazari et al, 2021; Hosseini et al, 

2021;; Sadeghi et al. 2019), showing an 

increasing land degradation trend, caused by 

human and natural factors. On the other hand, 

remote sensing techniques are considered as 

effective tools for assessing land degradation. 

However, as no study has investigated the trend 

of vegetation indices via statistical analysis, this 

study used the NDVI and EVI to study the 

trend of land degradation in the study area. To 

this end, land-use and climatic factors 

(temperature and precipitation) were considered 

as effective human and climatic factors on land 

degradation, respectively. Generally, the main 

purpose of this study was to examine the 

relationship between vegetation indices, land 

use, and climatic factors and determine the 

most effective factors involved in land 

degradation in the study area. 

 

2. Materials and Methods 

2.1. The study area 

Located in northeastern Iran with an arid and 

semi-arid climate, the study area comprised an 

area of 150,000 km2, including Khorasan 

Razavi and North Khorasan provinces (Fig. 1). 

The highest and lowest elevations were 3305 m 

and 231 m above the sea level in the north and 

the east of the study area, respectively. The 

northern part of the study area was mostly 

mountainous, including some productive plains 

used for agriculture with adequate precipitation 

and sufficient groundwater resources. However, 

the area of agricultural lands was negligible in 

the southern part of the study area due to its low 

rainfall, poor vegetation, and proximity to the 

desert.

 

 
Figure (1): Location of the study area in Iran 

2.2. Methodology The process of land degradation can be 
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evaluated through statistical tests and remote 

sensing, considering the fact that remote 

sensing is an efficient approach for assessing 

land degradation, as it provides access to spatial 

and time-series data (Harris, 2014). Therefore, 

as the land degradation process is affected by 

both human activities (land use) and climatic 

factors (temperature and precipitation), this 

study used NDVI and EVI to examine the 

process. Generally, the present study was 

carried out in four major phases: i) Extracting 

vegetation indices based on MOD13A2 product 

and LULC (land use/land cover) based on 

MCD12Q1 product; ii) analyzing the trend of 

EVI and NDVI by Mann-Kendall test;  iii) 

Collecting climatic factors (temperature and 

precipitation) and analyzing their trend via 

Mann-Kendall test; iv) investigating the 

relationship between vegetation indices, 

climatic factors, and land use. 

Vegetative indices 

Satellite data are often used for extensive study 

of vegetation. Moreover,  to reduce the effect of 

undesired factors on the obtained information, 

vegetation is required to be differentiated from 

other features, which cannot be conducted via 

single bands ( Bannari et al. 1995). As 

vegetation indices represent mathematical 

relationships of spectral bands (e.g., addition, 

multiplication, subtraction, and division) and 

show the vegetation's health and status (Byod 

and Danson,2005), the vegetation index (VI) is 

a numerical index based on concepts of 

biology, chemistry, and physics, which 

provides useful empirical information 

concerning the vegetation.  

During the past half-century, NDVI has been 

widely used for vegetation mapping and 

monitoring and the assessment of land cover 

and its associated changes. On the other hand, 

as another index similar to NDVI which is used 

to quantify vegetation greenness, EVI corrects 

some atmospheric conditions and canopy 

background noise and is more sensitive in areas 

with dense vegetation, being extremely popular 

due to its ability to eliminate background and 

atmosphere noises. Moreover, while NDVI 

asymptotically saturates in high biomass 

regions, EVI does not do so in the same 

conditions. Therefore, this study used both 

NDVI and EVI. 

Launched by NASA on the Terra satellite in 

1999 and on the Aqua satellite in 2002, MODIS 

(Moderate Resolution Imaging 

Spectroradiometer) is a satellite-borne sensor 

that is widely used in environmental sciences. 

Terra MODIS and Aqua MODIS are viewing 

the entire Earth's surface every one or two days, 

acquiring data in 36 spectral bands with 

different spatial resolutions, including 2 bands 

at 250 meters, 5 bands at 500 m, and 29 bands 

at 1 kilometer.  

MODIS is designed to measure large-scale 

near-surface dynamics, including cloud cover, 

ground irradiance, observations in the oceans, 

the land surface, and the lower levels of the 

atmosphere. Therefore, this study used Terra 

satellite images (MODIS sensor) to examine 

vegetation changes. To this end, EVI and NDVI 

were extracted from MODIS 16-day product 

(MOD13A2) with 1 km resolution and were 

downloaded from http://neo.sci.gsfc.nasa.gov. 

Then, the images (including reprojection and 

standardization) were preprocessed by the 

MCTK1plugin in ENVI5.1 software (Thapa et 

al. 2019), followed by the development of the 

study area's NDVI and EVI maps for the 2000-

2017 period using the ENVI 5.1 software. 

Moreover, the average values of the indices 

were extracted for different years. Finally, 

Mann-Kendall nonparametric statistical test 

was performed in the Terrset software to 

investigate the significant trend of NDVI and 

EVI time series. 

Preparing land-use maps 

The MCD12Q1 product (with a resolution of 
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500 meters) was used for preparing land-use 

maps. 

In brief, the following steps were carried out 

to prepare a land-use map: 

1. Reprojecting MODIS product in ENVI 

5.1 using MODIS toolkit; 

2. Validating land-use map based on the 

ground truth map using the kappa coefficient; 

3. Transferring the classified images into 

ArcGIS 10.7 and analyzing the results; 

4. investigating the trend of land-use change, 

estimating the area of each land-use class in 

ArcGIS 10.7, and analyzing their trend of 

changes for the 2000-2017 period in the Terrset 

software using the Mann-Kendall test. 

Climatic factors 

This study used the annual precipitation and 

temperature data extracted from the Mashhad 

meteorological station to examine the trend of 

climatic factors. To this end, the data were 

normalized using the Kolmogorov Smirnov test 

whose homogeneity was then investigated. 

Also, the Mann-Kendall test was used to study 

the trend of climatic factors (Table1). 

 

Table (1). Meteorological data from the synoptic Station of Mashhad 

Station Meteorological data Statistical period Elevation (m) Latitude (degree) Longitude (degree) 

Mashhad 

 

Precipitation (mm) 
1985-2017 999.2 36°  16´ N 59°  38´ E 

Temperature (°C ) 

 

Investigating the relationship between 

vegetation indices, climatic factors, and land-

use  

This study used the Pearson correlation 

coefficient to investigate the relationship 

between EVI, NDVI, climatic factors, and land 

use. Figure 2 shows the overall schematic of the 

research.

 

 
Figure (2): The overall schematic of the research 

3. Results 

To investigate the trend of vegetation changes 

in the study area, EVI maps were prepared for 

the month of May (when vegetation has the 

most density) from 2000 to 2017. According to 

Fig. 3, the highest and lowest EVI values were 

observed in the northern and southern parts of 

the study area, respectively, considering the 

fact that the northern parts are mountainous 

with higher precipitation and lower 

temperatures, providing more favorable 

conditions for vegetation. 
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Figure (3): The changes in EVI index in the study area (2000-2017) 
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In Fig. 4, the significance of the trend of 

EVI changes from 2000 to 2017 was also 

examined, the results of which indicated that 

68.64% of the region had a negative 

decreasing trend, and 0.42% of the region had 

a significant negative trend. Moreover, 31.36% 

of the region had a positive increasing trend in 

the EVI, and 0.15% of the area had a 

significant positive trend. 

 

 
Figure (4). Investigation of the trend of EVI changes in the study area (Significance at the level of 0.05) 

 

The NDVI obtained from the MOD13A2 

was also used to examine vegetation in the 

2000-2017 period, whose results showed that 

the northern part of the study area possessed 

the highest vegetation (Figure 5). It was also 

found that the highest and the lowest NDVI 

values throughout the study period belonged to 

the northern and southern parts of the study 

area, respectively. Furthermore, the NDVI 

maps of the period suggested that in some 

years, including 2008 and 2017, the index did 

not follow its general trend, which can be 

attributed to the impact of vegetation on 

factors such as climatic parameters. 
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Figure (5): NDVI changes in the study area 

 

Then, the trends of the NDVI index from 

2000 to 2017 were mapped using Terrset 

software at the 95% confidence level (Figure 

6). 
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Figure (6): Investigation of the trend of changes in the NDVI index in the study area 

 

Figure (7) shows the mean annual NDVI 

and EVI values from 2000 to 2017.  

Accordingly, the linear trend was negative in 

both NDVI and EVI throughout the whole 

period. Moreover, the trend of the two indices 

was mostly increasing until 2007, particularly 

low in 2008 and 2010, and decreasing in the 

rest. Also, the highest EVI value was observed 

in 2009. On the other hand, the highest 

precipitation value throughout the study period 

was found in 2009 (Figure 7), indicating a 

close relationship between vegetation and 

precipitation, and the strong dependence of 

vegetation on precipitation. 

  

 
Figure (7): The trend of NDVI and EVI changes in the study area 

 

Table (2) shows the results of the Mann-

Kendall test that was used to investigate the 

significance of the trend in NDVI and EVI, 

which was decreasing and significant. 
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Table (2): Results of the Mann-Kendall test on NDVI and EVI (2001-2017) 

parameter 
Average 

value 
Kendall's tau 

p-value 

(Two-tailed) 
alpha Result of the test 

NDVI 0.164 -0.428 <0.0001 0.01 

As the obtained p-value is lower than the 

significance level (0.05), the H0 hypothesis is 

rejected and the H1 hypothesis is confirmed. 

The trend is positive, incremental, and 

significant at the 99% confidence level. 

EVI 0.12 -0.420 <0.0001 0.01 

As the obtained p-value is less than the 

significance level (0.05), the H0 hypothesis is 

rejected and the H1 hypothesis is confirmed. 

The trend is negative, incremental, and 

significant at the 99% confidence level. 

 

In addition, land-use maps were prepared for the 2000-2017 period in envi5.1 software (Fig8). 
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Figure (8): The trends of land-use change in the study area (2001 -2017) 

 

Figure (9) shows the trend of each land-use 

change in the study area during different years. 

throughout the period, the area of agricultural 

land and rangeland decreased and that of urban 

land, barren land, and forest increased. 
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Figure (9): Investigation of the trend of land-use change throughout the study period 

 

Table (3) shows the trend of changes in the 

area of each land-use class in the 2001-2017 

period, according to which the trend of 

changes in the area of forest, urban, and barren 

lands is significantly positive and increasing 

(p<0.01). However, the trend of changes in the 

area of rangeland and agricultural land is 

significantly negative and decreasing (p<0.01).

 

Table (3): Results of the Mann-Kendall test for the area under each land-use category (2000-2017) 

parameter 
Yearly 

average 

Kendall's 

tau 

p-value 

(Two-tailed) 
alpha Test Result  

Forest 28947.313 0.933 <0.0001 0.05 

As the obtained p-value is less than the significance 

level (0.05), the H0 hypothesis is rejected and the H1 

hypothesis is confirmed. The trend is positive, 

incremental, and significant at the 95% confidence 

level. 

Rangeland 51269.688 -0.867 <0.0001 0.05 

As the obtained p-value is less than the significance 

level (0.05), the H0 hypothesis is rejected and the H1 

hypothesis is confirmed. The trend is negative, 

decreasing, and significant at the 95% confidence 

level. 

Agriculture 4895.125 -0.817 
 

<0.0001 

 

0.05 

As the obtained p-value is less than the significance 

level (0.05), the H0 hypothesis is rejected and the H1 

hypothesis is confirmed. The trend is negative,  

decreasing, and significant at the 95% confidence 

level. 

Urban 678.125 0.979 
 

<0.0001 

 

0.05 

As the obtained p-value is less than the significance 

level (0.05), the H0 hypothesis is rejected and the H1 

hypothesis is confirmed. The trend is positive, 

incremental, and significant at the 95% confidence 

level.                                                                     

Barren 

land 
58243.250 0.683 

 

<0.0001 

 

0.05 

As the obtained p-value is less than the significance 

level (0.05), the H0 hypothesis is rejected and the H1 

hypothesis is confirmed. The trend is positive, 

incremental, and significant at the 95% confidence 

level. 
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climatic parameters are one of the most 

important factors affecting vegetation. 

Therefore, the trend of changes in climate 

factors of precipitation and temperature in 

Mashhad station was studied from 2000 to 

2017. Figure (10) shows the trend of 

precipitation and temperature changes during 

this period. 

 
Figure (10): Variations in temperature and precipitation in the study area 

 

Table (4) shows the results of the Mann-

Kendall test on precipitation and temperature 

data from 2001to 2017 collected from the 

Mashhad synoptic station. In terms of the 

average temperature, given that the p-value 

was < 0.05, the H0 hypothesis was rejected 

and the H1 hypothesis was confirmed. 

Moreover,  the trend of temperature changes 

was significantly positive in the study region. 

In terms of precipitation, as the p-value was 

>0.05, the trend of precipitation changes was 

not significant in the study region. 

 

Table (4): Results of the Mann-Kendall test at Mashhad's Synoptic Station (2001-2017) 

parameter 
Average 

value 

Kendall's 

tau 

p-value 

(Two-tailed) 
alpha Test Results  

Temperature 

average (C°) 
15.82 0.30 <0.0001 0.05 

As the obtained p-value is less than the 

significance level (0.05), the H0 hypothesis is 

rejected and the H1 hypothesis is confirmed. 

The trend is positive, incremental, and 

significant at the 95% confidence level. 

 

Precipitation 

(mm) 
230.68 -0.07 0.195 0.05 

As the obtained p-value is greater than the 

significance level (0.05), the H0 hypothesis is 

confirmed. The trend is negative, decreasing, 

and not significant at the 95% confidence level. 

 

 

In the next step, the relationship between 

EVI, NDVI, climatic factors, and land-use was 

investigated using the Pearson correlation 

coefficient, the results of which showed that 

the correlation between NDVI, EVI, and 

precipitation was significant at the 1% level 

(table5), indicating that vegetation changes 

depended on precipitation in the study area.
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Table (5): Pearson correlation coefficient between annual values of vegetation indices, climatic parameters, and 

the area under each land-use category 

 Forest Rangeland Agriculture Urban 
Barren 

land 
EVI NDVI Temperature Precipitation 

Forest 1         

Rangeland 
-

0.88** 
1        

Agriculture 
-

0.96** 
0.79** 1       

Urban 0.75** -0.82** -0.66** 1      

Barren land 0.70** -0.95** -0.59* 0.79** 1     

EVI 0.58* 0.63** 0.63** -0.53* -0.60* 1    

NDVI 0.63** 0.57* 0.59* -0.58* -0.48* 0.59* 1   

Temperature 0.23 -0.37 -0.17 0.29 0.38 -0.18 -0.41 1  

Precipitation 0.04 -0.03 0.02 0.04 0.01 0.30 0.53* -0.32 1 

** Significant at P < 1% 

* Significant at P < 5% 

 

4. Discussion and Conclusion 

This study uses EVI and NDVI to evaluate land 

degradation (da Silva, 2020; Rokni and Musa, 

2019; Baeza et al. 2020). On the other hand, 

mathematical analysis of the data was 

facilitated via vegetation indices. The results 

suggested that the vegetation gradually changed 

over time due to various natural or human-

induced factors that affected the ecosystem's 

conditions and performance. It was also found 

that the trends of both NDVI and EVI had 

similarly changed over time and that NDVI and 

EVI values significantly decreased in the study 

area from 2000 to 2017, indicating the 

increasing trend of land degradation in the 

study area, which is consistent with the results 

reported by Masoudi et al. (2018) in Isfahan 

province, Iran, who concluded that the decrease 

in NDVI and EVI values was a sign of land 

degradation. Furthermore, the findings of the 

studies conducted by Faramarzi et al. (2018) in 

western Iran and Sandra et al. (2015) in 

Mongolia indicated that the decrease in NDVI 

value led to land degradation.  

Considering the fact that land degradation is 

affected by both human and climatic factors, 

this study considered land-use as an indicator of 

human activities, whose analysis showed that 

while rangelands and agricultural lands 

decreased significantly from 2000 to 2017, the 

area of forest, urban land, and the barren land 

significantly increased, implying human 

intervention in land-use change. On the other 

hand, the decline of rangelands could be 

attributed to the conversion of these lands into 

agricultural, urban, and barren lands, which is a 

form of destruction, and to water resources 

depletion and the decrease in water quality due 

to overuse of the resources.  

According to the study's results, the decline 

of agricultural lands and rangelands decreased 

the NDVI and EVI values in the study area. On 

the other hand, the increase in forest lands 

could be attributed to the deforestation policies 

implemented by the government to prevent the 

spread of wind erosion and increase the green 

spaces. As for the influence of human factors 

on land degradation, it could be argued that the 

role of humans in the land-use change in the 

study area was largely due to the direct and 

indirect effect of government policies on land 

degradation. For instance, Clément et al (2008) 

examined the effects of government policies on 

land-use in northern Vietnam, concluding that 

to elaborate on the significance of human 

intervention-induced environmental changes 

and the role of government policies in land use, 

relevant macro-factors should be analyzed. The 
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expansion of barren lands in the region could 

also be attributed to the abandonment of 

agricultural lands in the past few years due to 

the limited water resources and over-extraction 

of them in the study area.  

Moreover, temperature and precipitation 

data were used to investigate the impact of 

environmental factors on land degradation. 

Accordingly, it was found that the temperature 

increased and its change trend was significant 

and that the precipitation decreased but its trend 

was not significant, leading to a decrease in the 

reservoirs of groundwater aquifers and the 

available natural water in the study area, which 

also confirmed the decrease in NDVI and EVI 

values.  

While the main purpose of this study was to 

investigate the influence of land-use change and 

climate parameters on land degradation,  it was 

difficult to separate the effects of each of them 

quantitatively. However, the Pearson 

correlation coefficient was applied to examine 

the relationship between land use, climatic 

parameters, and vegetation indices, the results 

of which indicated that the Pearson correlation 

coefficient between vegetation indices and each 

land-use class was significant at the 95% 

confidence level. In other words, the correlation 

between vegetation indices and land-use classes 

of the forest, rangeland, and agricultural lands 

was significantly positive, the correlation 

between vegetation indices and land-use classes 

of barren and urban lands was significantly 

negative, and the correlation between 

vegetation indices and climatic parameters was 

not significant.  

On the other hand, while the relationship 

between NDVI and precipitation was 

significantly positive at a 95% confidence level 

(R=0.53), the correlation between NDVI with 

temperature was not significant. Generally, the 

study's results suggested that land-use classes 

had a higher correlation with vegetation indices 

compared to the climatic parameters. Therefore, 

it can be argued that land-use and human 

activities have more influence on vegetation 

indices and land degradation. 

 In general, land degradation in the study 

area can be attributed to both human and 

climatic factors, and unplanned land-use 

changes associated with climate change have 

resulted in reduced vegetation and consequently 

land degradation, which can greatly affect the 

security of the area in a long time. Therefore, 

optimal use of the study area's water and soil 

resources and the minimization of land-use 

changes are highly recommended. On the other 

hand, as for climate change, appropriate 

policies and programs must be developed to 

mitigate the damage to the stakeholders. 
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