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Abstract 
As complex climatic events, dust storms could be managed by considering their nature and 
attributes. Therefore, this study sought to investigate interactions between the aerosol optical 
depth index and climatic land surface characteristics using data mining and zoning techniques in 
dust-prone regions of the Yazd province, Iran. To this end, the required data was collected from 
several climatic products of the University of Idaho and Modis Sensor for the 2000–2017 period 
using Google Earth Engine. 

Moreover, the image of the maximum dust was processed using AOD Modis and ENVI 5.1 
software. Then, the underlying correlation between the variables was identified through various 
data mining techniques. In addition, the ROC curve was used for cross-validation, and different 
metrics were applied to assess the model, including Square Root of Error, Absolute Normalized 
Error, Classification Error, Absolute Error, and Crucial Class Fraction Ratio. Finally, the best 
data mining approach was used to determine the location and zoning of dust-prone regions.  

The findings of the study indicated that the decision tree outperformed the Bayesian theory 
with 89.53% accuracy and that it performed better than the nearest neighbor with an accuracy of 
61.3% and 81.31%, respectively. As for the validation of the models, the decision tree methods, 
nearest neighbor search, and Bayesian network theory showed 74.21%, 64.39%, and 55.42% 
values, respectively.  

Moreover, in regions with crucial harvest and dust ranges, wind speed and soil surface 
moisture were found to have the most significant role. On the other hand, the zoning of dust-
prone regions revealed that 888,067067 Km2 of areas were covered with the highest 
concentrations of dust, most of which were located in the central and eastern parts of Yazd 
province, with the AOD values being 0.465, 0.309, 0.162, and 0.065 for the ranges of 0-0.036, 
0.036-0.072, 0.072-0.107, and 0.107-0.3, respectively.  
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1. Introduction 
Dust storms result from the co-existence of 
persistent dryness, parched topsoil, and gusty 
winds (O’Liongsigh et al., 2014). Moreover, the 
wind acts as a mediator of such climatic 
anomalies, considering the presence of 
temperature, humidity, and pressure variations 
in the horizontal direction of the atmosphere 
(Liu et al., 2020). On the other hand, while dust 
particles move a hundred miles per hour, sand 
particles move far less. Consequently, the 
movement of spinning systems through the 
higher layers of the atmosphere and the 
subsequent cold air loss, together with radiant 
heat at the land surface, generate such 
circumstances that cause airflow imbalances. 
Therefore, it could be argued that land use, 
geology, slope, altitude, precipitation, and 
vegetation variations significantly contribute to 
the creation of dust accumulation hotspots (Lee 
et al., 2012). 

Dust storms are considered a kind of 
environmental occurrence that can hurt public 
health and the economy (Barbulescu and 
Nazzal, 2020). Thus, it is essential to identify 
and track the sources of dust generation in cases 
when wind storms occur (Gholami et al., 2020). 
Furthermore, as dust storms are currently 
classified among the world's major challenges, 
it is crucial to assess original data to enhance 
management power.  

Addressing fundamental interconnections 
between a system’s components is required for 
a comprehensive understanding of 
environmental hazards. It is also necessary for 
data analysis as a critical component in 
conceptualizing the dynamics behind natural 
occurrences (Gibert et al., 2018). Therefore, 
investigating all climatic and surface properties 
of the soil in dusty areas could help assess the 
dusty anomalies of a specific location 
(Boroughani et al., 2020). In this regard, several 
techniques have been suggested by researchers 
for surveying dust, including remote sensing 
(Nabavi et al., 2017), sediment streams 
(Gholami et al., 2020), microwave observation, 
and modeling techniques (Fernández et al., 
2019), and numerical methods (Beegum et al., 
2018). 

 Hybrid methodologies, most of which are 
primarily focused on machine learning, data 

mining, ArcGIS, and spatial modeling are 
among the most recent advancements in dust 
studies (Gholami et al., 2020). Accordingly, 
data mining is the process of identifying 
unknown concepts involved in and 
investigating the relationships existing between 
statistical information to obtain a more accurate 
overall understanding (Gibert et al., 2018). In 
other words, data mining is a technique 
generally used for extracting potentially 
innovative information from a specific set of 
input data, encompassing a variety of prediction 
models. 

 Moreover, the optical depth of a tiny dust 
can be estimated using optical depth data (a 
non-dimensional variable retrieved from Modis 
observational data). For instance, Aloysius et al. 
(2009), Retalis & Hadjimitsis (2010), and 
Nafarzadegan et al. (2021) found 0.9, 0.86, 
0.97, and 0.83 correlation coefficients between 
AOD accuracy values measured by Modis 
satellite and the ones measured by surface 
ground station measuring PM10 particles. 

In addition, Gholami et al. (2020) used 
twelve climate variables, soil and land surface 
attributes, eight data mining algorithms, and 
GIS to generate geographical maps of the dust 
sources in the Khuzestan province, reporting 
that the EM (Expectation Maximization) model 
presented the most accurate prediction in 
locating the sources of dust and that the model 
included wind speed as the most important 
determining element.  

On the other hand, Namdari et al. (2018) 
examined the movements of dust storms in the 
Middle East from 2005 to 2016 using the 
aerosol optical depth index and monthly 
meteorological data on precipitation, 
temperature, wind speed, and air pressure, 
finding a strong relationship between 
temperature and the aerosol's optical depth. 

Furthermore, Wang et al. (2023) used 
Machine a learning-based model to predict the 
sources of sand and dust storms in arid areas of 
Central Asia using the Google Earth Engine 
(GEE) platform to select fourteen 
meteorological and terrestrial factors involved 
in controlling the susceptibility of the sources 
and modeling process. They found that the 
random forest (RF) algorithm, gradient 
boosting tree (GBT), maximum entropy 



 
M. Kazemi, A. jafarpoor, R. Naderi Samani / Desert Ecosystem Engineering Journal (2023) 12 (9) 1-14 

 

3 

(MaxEnt) model, and support vector machine 
(SVM) performed well in predicting the sources 
of sand and dust storms, and that wind speed 
and normalized difference vegetation index 
(NDVI) played the most important role in this 
regard.  

Continuously exposed to dust storms, Yazd 
province experiences substantial damage in 
certain periods (Parivar et al., 2020). Therefore, 
pinpointing those zones that are vulnerable to 
dust storms and their detrimental effects might 
assist in mitigating the phenomenon's adverse 
consequences. However, no study has so far 
been conducted on the zoning and mapping of 
dust-sensitive foci in Iran through the 
application of decision tree data mining 
algorithms, Bayesian networks, nearest 
neighbor K, multiple variables, and large 
satellite data. Thus, the current study sought to 
investigate dust-prone regions in the Yazd 
province using data mining techniques and 
zoning. 

 

2. Materials and Methods  
2.1. Case Study 
Covering an area of 131575 km2, Yazd province 
is a vegetation-free area located in Central 
Iran's dry and desert region between latitudes 
29˚ and 52́, 33˚ and 27 north, and 52˚ and 55, 
and 56˚ and 37′ east. Characterized by 
relatively cold winters and scorching dry 
summers (Taghizadeh-Mehrjardi et al., 2020), 
the province comprises deserts and low-water 
plains that are exposed to wind erosion 
(Khosravi et al., 2017).  

On the other hand, vertical air masses 
contribute to atmospheric instability in the 
province and thus bring about severe 
sandstorms, the majority of which occur in 
May. Furthermore, the presence of a 
prospective storm source in arid and saline parts 
of the province results from the Gavkhoni 
wetlands and neighboring deserts 
(Mohammadpour Penchah et al., 2020). Fig. 1 
illustrates the location of Yazd province and 
sampling spots for data mining models. 

 

Figure (1): The location of sample points 
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2.2 Methodology 
This study collected satellite images of climate 
products and surface specifications from the 
University of Idaho and the Modis satellite 
using Google Earth Engine. To this end, the 
required codes were written via JavaScript 
based on the shape of the Yazd province's 
boundary file, followed by the application of 
innovative techniques in the field of remote 
sensing. It should be noted that this form of 
computation is merely conducted through 
programs such as ENVI, which take months to 
perform. 

 Since satellite images should first be 
corrected geometrically and atmospherically to 
decrease the proportion of errors, each 
computation requires a substantial set of 
variables and a series of images with large 
volumes that should be generated and 
categorized to acquire a final output. Therefore, 
the operation is highly time-consuming and 
needs a significant volume of large-scale 
storage memory for each extracted image.  

The intended images were collected in May 
of each year from 2000 to 2017, which were 
then entered into the GIS. The parameters used 
in this regard included wind speed, deep soil 

moisture, cumulative precipitation, Palmer 
drought index, exposed vegetation index, and 
reference evapotranspiration that were 
calculated using the Pemman-Mantis algorithm, 
soil surface moisture, ground surface short 
wavelength radius, minimum and maximum air 
temperature, vapor pressure, lack of steam 
pressure, landforms and land cover, lithology, 
percentage of clay and sand, and soil dryness 
(Fig 2, 3, 4, Table 1). Accordingly, the climatic 
parameters included Palmer drought index data, 
Precipitation accumulation, maximum 
temperature, minimum temperature, wind 
speed, and other parameters that were related to 
the characteristics of the land surface and soil. 
The unclassified data were then entered into the 
modeling process in a raster form. 

 As for the year parameter, the maximum 
values of the aerosol optical depth index were 
averaged in May and then computed for the 
considered period using Modi's dust 
observational service and the ENVI5.3.1 add-on 
toolkit (MCTK). Moreover, the MOD04 
product with the dark algorithm was imported 
daily in Modi's aerosol products (from 
https://worldview.earthdata.nasa.gov) (Sun et 
al., 2021). 

  
Table (1): The variables that have been considered in this study 

Variable name Unit Min Max Average 
Standard 

deviation 

Actual evapotranspiration millimeter 0.729 5.753 2.859 0.789 

Aspect  - -1.000 357.274 175.951 105.217 

Soil bulk density 
Kg per cubic 

meter 
136.000 154.000 145.763 1.896 

Soil organic carbon content percent 0.000 2.000 0.005 0.081 

Clay content percent 4.000 26.000 11.950 4.259 

Climate water deficit millimeter 169.894 241.378 223.857 12.756 

Elevation meter 724.000 2421.000 1186.739 283.154 

Geology  - 2.000 145.000 110.572 23.497 

Landform  - 0.000 41.000 30.169 5.510 

NDVI 
dimensionless 

variable 
0.026 0.270 0.074 0.021 

Land cover  - 3.000 33.000 12.397 9.786 

Palmer Drought Severity Index 
dimensionless 

variable 
-3.863 -1.688 -2.677 0.421 

Reference evapotranspiration millimeter 175.106 243.494 221.588 12.327 

Precipitation accumulation millimeter 0.000 5.000 2.116 0.741 

Sand content percent 41.000 91.000 72.416 10.638 

Slope percent 0.000 43.267 3.502 5.518 

Soil moisture millimeter 0.000 2.344 0.306 0.335 
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Variable name Unit Min Max Average 
Standard 

deviation 

Soil PH  - 75.000 83.000 79.150 1.047 

Downward surface shortwave 
radiation 

Watts per 
square meter 

270.900 281.078 276.726 2.177 

SRTM-derived topographic 
diversity 

dimensionless 
variable 

0.000 1.000 0.131 0.154 

Minimum temperature centigrade 9.311 21.383 18.474 2.372 

Maximum temperature centigrade 26.567 36.922 34.687 1.955 

Vapor pressure KPa 0.539 0.971 0.830 0.071 

Vapor pressure deficit KPa 1.797 3.521 3.048 0.392 

Wind-speed 
Meters per 
second 

2.574 3.457 3.206 0.145 

Aerosol Optical Depth 
dimensionless 

variable 
0.000 0.143 0.049 0.032 

 

Three common Bayesian data mining 
techniques were used to assess the relationship 
between the dust event factors, including the 
nearest neighbor, decision tree, and regression 
tree. On the other hand, 70% of the dataset was 
used for training and 30% of which for 
validation (Nabipour et al., 2020). The Simple 
Bayesian approach is a simplified 
categorization based on Bayesian theory which 
directs the process of learning.  

Providing a mechanism for computing the 
secondary probability P (h | D) of p (h), P (D), 
and P (D | h), the Bayesian theorem provides a 
framework for Bayesian learning techniques. 
Equation 1 shows a simplified Bayesian 
calculation algorithm. 

�	(ℎ	|	�) = 	
�	(ℎ	|	�)	�	(ℎ	)

�		�)
												 (1) 

Where P - (h) indicates starting probability, P 
(D) shows the initial probability of witnessing 
training data and D, P (D | h) represents the 
probability of witnessing D in the presence of 
the valid hypothesis h.  

The second probability h (confirmation of 
hypothesis h upon observation of an 
instructive example D) is sometimes attributed 
to the secondary probability h. Equation 2 
shows the hML calculating operation: 

ℎ�� = ��� ��
��� �	(�	|	�)	 (2) 

Accordingly, a learner considers a 
collection of hypotheses such as H and selects 
the most likely one (H) based on the teaching 
instances D. The probability of D data for h is 
symbolized by P (D | h), and any hypothesis 
that maximizes P (D | h) is expressed by hML, 

i.e., the maximum likelihood (Llorente et al., 
2022).  

A decision tree is a system used to predict 
and visually express probable outcomes based 
on observed data, where each node comprises 
two branches, performing a thorough analysis 
of all available variables and value branches of 
each option. Moreover, the tree is optimized 
for fragmentation based on Equation 3. Thus, 
if ∅(s│t) is the suitable fragmentation criteria 
for the variable s in node t, the formula would 
be as follows: 

∅(s|t) = 2���� � �� �
�
��
� �

������

���

− �(
�
��
� � 

(3) 

Where tL shows left-handed branch t, tR 
represents right-handed branch t, PL is the ratio 
of the number of observations in tL to the total 
number of observations in educational data, PR 
is the ratio of the number of observations in tR 
to the total number of observations in 
educational data, P (j/tL) stands for the ratio of 
the number of classes j in tL to the number of 
observations in node t, and P (j/ tR) shows the 
ratio of the number of classes j in tR to the 
number of observations in node t.  

In the above-mentioned formula, the ideal 
point is reached when the preceding criteria 
are maximized for all potential crushing 
scenarios in a particular node (Llorente et al., 
2022). Furthermore, K is used to approximate 
the density distribution function of educational 
data and categorize the testing data based on 
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educational trends (Carrasco et al., 2020).  
The primary aim of such a data mining 

technique is to identify and estimate the 
features of a sequence of unlabeled data based 
on their degree of resemblance to known data 
(Esteban et al., 2022). Accordingly, a sample is 
classified by the majority vote of its neighbors, 
depending on the closest features of the other 
members of the collection (training samples) 
(Weinberger and Saul, 2009). As a positive 
value in such a procedure (properties most 
similar to the target sample), if k = 1, the 
sample is simply found in the class 
immediately next to it. It is worth mentioning 
that K should be individual so that identical 
votes are not repeated. 

 Moreover, the intended target data is 
categorized in a data mining model based on 
its proximity to the training examples. On the 
other hand, the Euclidean distance is typically 
adopted in this model to identify the 
relationship between the testing dataset and the 
data that is being tested.  Equation 4 shows the 
formula for calculating Euclidean distance: 

(�. �) = 	��(�� − ��)�
�

���

 

(4) 

Where X stands for the educational data with 
particular parameters (x1 to xn) and Y shows 
educational data with the same number of 
specific parameters (y1 to yn). 

This study used the receiver operating 
characteristic (ROC) curve to assess the 
outcomes of modeling dust-prone regions. 
The curve yields consistent results when 
assessing and comparing the performance of 
models (Boroughani et al., 2020) and applies 
to a wide variety of spatial modeling 
applications (Naghibi et al., 2017; Chen et 
al., 2018).  

The ROC curve is a visual and graphical 
depiction of the degree of dependability of 
the modeling findings when 70% of the data 
is used, and the values of the area under the 
curve vary from zero to one. Accordingly, 
0.9-1, 0.8-0.9, 0.7-0.8, 0.7-0.6, and 0.6-0.5 
indicate excellent, very good, good; 
medium, and poor accuracy rates, 
respectively (Nandi and Shakoor, 2009; 
Nabipour et al., 2020). 

3. Results  
The modelers were evaluated using validation, 
classification error, kappa coefficient, absolute 
error, normalized absolute error, and the sum 
of the residual squares of the error. As shown 
in Table 2, the nearest neighbor technique is 
the most effective modeler, followed by the 
decision tree. In this regard, a decision tree 
with a kappa coefficient of 0.70 or higher 
produced acceptable simulation results. 
However, the basic Bayesian model failed to 
offer a satisfactory performance. 

 
Table (2): Indicators of model assessment as a result of modeling 

Decision Tree model 
Simple Bayesian 

model 
K-Nearest 

Neighborhood 
Index name 

81.31 % 61.03 % 89.53 % Model accuracy 

18.69 % 38.97 % 10.47 % Classification error 

0.702 % 0.422 % 0.844 % Kappa 

0.262 ± 0.299 0.393 ± 0.440 0.105 ± 0.306 Absolute error 

3.503 5.257 1.4 Normalized absolute error 

0.397 0.590 0.324 Root mean squared error 

 

Following the analysis of the modelers, it 
was necessary to evaluate the models' 
predictive ability for various classes of optical 
dust depth. Tables 3, 4, and 5 show the 
validation results found for the models used in 
the current study. Accordingly, the findings 
revealed that decision tree algorithms and 

nearest neighbor accurately predicted the 
second class of aerosol optical depth values 
with the greatest frequency by reality. 
Moreover, basic Bayesian network models 
provided one of the highest frequency values 
of aerosol optical depth.  
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Table (3): Simple Bayesian model validation 

Class  
accuracy 

Correct Layer 4 
(0.3 _ 0.107) 

Correct Layer 3 
(0.107 _ 0.072) 

Correct Layer 2 
(0.072 _ 0.036) 

Correct Layer 
1 (0 _ 0.036) 

Prediction. Layer 

64.85 % 27 61 112 369 1 (0 _ 0.036) 

77.33 % 5 24 116 5 2 (0.072 _ 0.036) 

29.65 % 9 94 210 4 3 (0.107 _ 0.072) 

41.18 % 14 10 9 1 4 (0.3 _ 0.107) 

 
Table (4): Validation of the decision tree model 

Class 
accuracy 

Correct Layer 4 
(0.3 _ 0.107) 

Correct Layer 3 
(0.107 _ 0.072) 

Correct Layer 2 
(0.072 _ 0.036) 

Correct Layer 1 (0 
_ 0.036) 

Prediction. Layer 

79.25 % 0 20 74 359 1 (0 _ 0.036) 

69.51 % 18 123 367 20 2 (0.072 _ 0.036) 

75 % 8 39 5 0 3 (0.107 _ 0.072)  

78.38 % 29 7 1 0 4 (0.3 _ 0.107) 

 
Table (5): Validation of the k-nearest neighbor model 

Class 
accuracy 

Correct Layer 4 
(0.3 _ 0.107) 

Correct Layer 3 
(0.107 _ 0.072) 

Correct Layer 2 
(0.072 _ 0.036) 

Correct Layer 1 (0 
_ 0.036) 

Prediction. Layer 

76.59 % 9 23 60 301 1 (0 _ 0.036) 

68.11 % 11 80 299 49 2 (0.072 _ 0.036) 

37.84 % 16 70 80 19 3 (0.107 _ 0.072)  

35.85 % 19 16 8 10 4 (0.3 _ 0.107) 

 
 

The Simple Bayesian model, decision tree, 

and nearest neighbor predicted aerosol optical 

depth by 55.42% ± 3.76%, 74.21% ± 3.55%, 

and 64.39% ± 4.41%, respectively. Based on 

the findings regarding performance validation, 

it could be argued that the decision tree data 

mining approach delivered the best 

performance in forecasting aerosol optical 

depth values despite being the best model of 

the nearest neighbor. Figure 2 shows the ROC 

curve for the decision tree model. As 

illustrated in Fig.2 and Table 5, the model's 

maximum performance is related to the 

decision tree with 99.81% area under the 

curve. Therefore, the tree is placed at the top 

class of model performance accuracy 

(Yesilnacar, 2005). 

 
 

Table (6): Performance evaluation results for the models 
Receiver Operating 

Characteristic (ROC) 
Under 
limit 

Upper limit Model  

99.81 % 0.75 1 Decision tree 

92 % 0.54 1 K-Nearest Neighborhood 

66.35 % 0.08 1 Simple Bayesian 
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Figure (2): ROC curves for the models employed (green: decision tree, red: k-nearest neighbor, blue: 

Simple Bayesian) 
 

To support this approach, the decision tree 
model was used to generate a confidence map 
for various aerosol optical depth classes to 
identify areas susceptible to dust storms using 

the model's branches and nodes. Figure 3 
illustrates the model's predicted map, dust-
prone region, and dust hotspots. 

 

 
Figure (3): Reliability maps for estimating the optical depth of aerosols using decision tree data mining  
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As shown in Figure 3, a dust susceptibility 
model was generated across four levels. The 
purpose of this study was to assess high-
harvesting locations and the regions vulnerable 
to dust storms, the majority of which are 
located in the center, west, and southwest of 
Yazd province. On the other hand, northern, 
eastern, and southeastern regions of the 
province possess less vulnerable areas to dust 
storms.  The extent of dust hotspots in the 
province is estimated to be roughly 7972 
square kilometers, approximately 6512 km of 
which (equivalent to 81.68%) falls under a 
0.88-1 confidence level (Fig. 3A).  

The magnitude of the intended zone will 

decrease if the range of the aforementioned 
class (0.88-1) becomes more limited and 
precise, thus increasing the accuracy of the 
measurement. The abovementioned technique, 
which excluded field references and relied 
only on the AOD index, the aforementioned 
factors, and remote sensing, demonstrated 
acceptable precision in regions susceptible to 
dust storms. Moreover, as illustrated in Figure 
4, the technique selected the main dust-
generating regions by finding the branches and 
logic of the tree. Accordingly, the zones were 
found to have a high degree of overlap with 
the dust foci found during the Geological 
Survey of Iran's field visits. 

 

 
Figure (4): Key zones prone to dust based on a decision tree data mining methodology 

 

The decision Tree algorithm provided the 

best accuracy for predicting AOD. Therefore, 

this model can be the best choice for preparing 

susceptibility maps of dust-generating sources 

investigated in this study. As seen in Table 4, 

the critical class of the AOD index (0.107-0.3) 

enjoys the highest precision (78.38% accuracy) 

compared to the other two models. In other 

words, the values of classification accuracy for 

the class 0.107-0.3 were 41.18%, 78.38%, and 

35.85% in the simple Bayesian, Decision Tree, 

and Nearest neighbor models, respectively. 
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The class prior to this range, i.e., the class 

0.072-0.107, also demonstrated the highest 

classification accuracy of 75% in the Decision 

Tree model.  

Therefore, compared to other models, the 

Decision Tree performed better in estimating 

the critical classes of dust storms. Moreover, 

the Decision Tree algorithm delivered a good 

performance in producing susceptibility maps 

of dust-generating sources, resulting from the 

interaction between the three statistical-based 

machine learning algorithms in the study area. 

It should be noted that although a model or 

classifier may achieve more accurate results at 

the initial assessment of the training dataset, it 

does not necessarily guarantee higher 

classification accuracy for the classified 

categories in the validation dataset that reflects 

real-world performance.  

In this study, while the k-nearest Neighbor 

classifier outperformed the decision tree 

method in the initial evaluation, the final 

classified categories found through the 

application of the decision tree model offered 

higher validation accuracy and better 

alignment with reality in the assessment of the 

model. Moreover, the Area Under the Curve 

(AUC) of the Receiver Operating 

Characteristic (ROC) ensured 99.81% 

accuracy, and the validation accuracy was 

found to be %74.21± %3.55 

 

4. Discussion 

The current study used decision tree, basic 

Bayesian, and nearest neighbor data mining 

models to zone dust-sensitive regions for the 

first time in Iran. Broghani et al. (2020) 

analyzed the performance of the two models 

using the surface curve underneath the ROC 

curve, concluding that the stochastic forest 

model outperformed the logistic regression 

model. Moreover, they applied factors such as 

soil, lithology, slope, vegetation index, distance 

from the river, geomorphological categories, 

and land use in their simulation model. 

Boroughani et al. (2020) used a wide 

variety of f factors in their study, including 

soil, rock properties, elevation, vegetation 

index, proximity to the river, geologic 

divisions, and land use. Wind speed (at a 

height of ten meters above the ground), soil 

moisture, cumulative precipitation, Palmer 

drought index, exposed vegetation index, soil 

dryness (water scarcity), and reference 

evapotranspiration, all of which were 

calculated using the Pemman-Mantis method.  

The current study employed soil surface 

moisture, visible soil weight, surface-ground 

short wavelength radius, minimum and 

maximum air temperature rates, vapor 

pressure, lack of steam pressure, and 

percentages of sand and clay. The results 

indicated that the decision tree technique 

delivered a better performance than the other 

two models, with 99.81% area under the 

receiver operating characteristic curve, which 

is consistent with the findings reported by 

Gholami et al. (2020). 

On the other hand, seven assessment factors 

were used to evaluate the modelers. 

Accordingly, it was found that the most 

appropriate model bore the highest value and 

the largest area under the ROC curve, which is 

compatible with the findings suggested by 

Gholami et al. (2020). The results also showed 

that while the nearest neighbor model was the 

greatest modeler, it did not deliver the best 

performance in terms of assessment and 

validation. However, the decision tree 

technique performed better when modeling 

restrictions were acceptable. Therefore, it is 

crucial to provide the model developers' 

assessment findings with their evaluation 

results.  

Boroughani et al. (2020) prepared a 

potential map of dust-generating sources using 

the data mining technique of the amplified 

regression tree. Moreover, they mapped dust 

hotspots from 2005 to 2016 using dust 

detection criteria. On the other hand, the 
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aerosol optical depth index was used in their 

study to detect dust across a 17-year period. 

The results of their study suggested that the 

area under the curve for the data mining 

technique was 79.68%, which is an acceptable 

grade. However, they did not report the 

findings of their modeling assessment 

regarding the testing data.  

This study tried to elaborate on the 

modeling assessment in terms of the testing 

data through zoning and identifying dust-

sensitive classes using the findings of 

fieldwork studies, empirical surveys, and the 

map of dust-generating centers published by 

Iran’s Geological Survey and Mineral 

Exploration. It should be noted that as there is 

no consensus over which data mining 

technique yields the desired findings for 

environmental data, each study uses the 

technique it finds the best based on the type of 

data it collects for investigation.  

Nafarzadegan et al. (2021) sought to assess 

the decision tree model's efficiency in 

predicting precipitation in central regions of 

Iran, indicating that the extremely randomized 

trees (ERT) model was more accurate in 

predicting wind erosion-sensitive areas. 

Moreover, while Boroughani et al. (2020) and 

Gholami et al. (2020) considered random 

forest (RF) and maximal expectation (EM) as 

the best data mining models, respectively, the 

current study found the decision tree as the 

optimal model for data mining of dust events. 

The study also found that the decision tree 

model produced more accurate verification 

results with respect to the reality and the 

evaluation of the model. 

 

5. Concoction 

This study attempted to identify dust-prone 

areas in Yazd province using Google Earth 

Engine data and classified variable data 

derived from mining methods. The results of 

the study suggested that wind speed and soil 

moisture played an important role in the 

formation of dust storms. Also, the central and 

eastern regions of the province suffered from 

the highest amount of dust. In general, the use 

of new approaches such as data mining proves 

useful in identifying climatic components. 

 Finally, it is recommended that readily 

accessible satellite data be combined with 

ready-made products and data mining 

techniques to investigate various correlations 

between environmental data and the map of 

dust-generating regions. The conclusion and 

recommendations of the study can be used to 

improve the management of dust-prone regions.
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